Connecting Atmospheric Properties and Synthetic Emission of Shock Waves Using 3D RMHD Simulations of the Quiet Sun

Author:

Sadykov Viacheslav M.ORCID,Kitiashvili Irina N.ORCID,Kosovichev Alexander G.ORCID,Wray Alan A.ORCID

Abstract

Abstract We analyze the evolution of shock waves in high-resolution 3D radiative MHD simulations of the quiet Sun and their synthetic emission characteristics. The simulations model the dynamics of a 12.8 × 12.8 × 15.2 Mm quiet-Sun region (including a 5.2 Mm layer of the upper convection zone and a 10 Mm atmosphere from the photosphere to corona) with an initially uniform vertical magnetic field of 10 G, naturally driven by convective flows. We synthesize the Mg II and C II spectral lines observed by the Interface Region Imaging Spectrograph (IRIS) satellite and extreme ultraviolet emission observed by the Solar Dynamics Observatory (SDO)/AIA telescope. Synthetic observations are obtained using the RH1.5D radiative transfer code and temperature response functions at both the numerical and instrumental resolutions. We found that the Doppler velocity jumps of the C II 1334.5 Å IRIS line and a relative enhancement of the emission in the 335 Å SDO/AIA channel are the best proxies for the enthalpy deposited by shock waves into the corona (with Kendall’s τ correlation coefficients of 0.59 and 0.38, respectively). The synthetic emission of the lines and the extreme ultraviolet passbands are correlated with each other during the shock-wave propagation. All studied shocks are mostly hydrodynamic (i.e., the magnetic energy carried by horizontal fields is ≤2.6% of the enthalpy for all events) and have Mach numbers >1.0–1.2 in the low corona. The study reveals the possibility of diagnosing energy transport by shock waves into the solar corona, as well as their other properties, by using IRIS and SDO/AIA sensing observations.

Funder

NASA

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3