First Observation of Chromospheric Waves in a Sunspot by DKIST/ViSP: The Anatomy of an Umbral Flash

Author:

French Ryan J.ORCID,Bogdan Thomas J.,Casini RobertoORCID,de Wijn Alfred G.ORCID,Judge Philip G.ORCID

Abstract

Abstract The Visible Spectro-Polarimeter of the NSF Daniel K. Inouye Solar Telescope collected its Science Verification data on 2021 May 7–8. The instrument observed multiple layers of a sunspot atmosphere simultaneously, in passbands of Ca ii 397 nm (H line), Fe i 630 nm, and Ca ii 854 nm, scanning the region with a spatial sampling of 0.″041 and an average temporal cadence of 7.76 s, for a duration of 38.8 minutes. The slit moved southward across the plane of sky at 3.83 km s−1. The spectropolarimetric scans exhibit prominent oscillatory “ridge” structures that lie nearly perpendicular to the direction of slit motion (north to south). These ridges are visible in the maps of line intensity, central wavelength, line width, and both linear and circular polarization. Contemporaneous Atmospheric Imaging Assembly observations indicate that these ridges are purely temporal in character and are likely attributed to the familiar chromospheric 3 minute umbral oscillations. We observe in detail a steady umbral flash near the center of the sunspot umbra. Although bad seeing limited the spatial resolution, the unique high signal-to-noise ratio data enable us to estimate the shock Mach numbers (≈2), propagation speeds (≈9 km s−1), and their impacts on the longitudinal magnetic field (ΔB ≈ 50 G), gas pressure, and temperature (ΔT/T ≈ 0.1) of subshocks over 30 s. We also find evidence for rarefaction waves situated between neighboring wave train shocks. The Ca ii 854 nm line width is fairly steady throughout the umbral flash, except for a sharp 1.5 km s−1 dip immediately before, and a comparable spike immediately after, the passage of the shock front. This zigzag in line width is centered on the subshock and extends over 0.″4.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3