Abstract
Abstract
The results of large-scale exoplanet transit surveys indicate that the distribution of small planet radii is likely sculpted by atmospheric loss. Several possible physical mechanisms exist for this loss of primordial atmospheres, each of which produces a different set of observational signatures. In this study, we investigate the impact-driven mode of atmosphere loss via N-body simulations. We compare the results from giant impacts, at a demographic level, to results from another commonly invoked method of atmosphere loss, photoevaporation. Applying two different loss prescriptions to the same sets of planets, we then examine the resulting distributions of planets with retained primordial atmospheres. As a result of this comparison, we identify two new pathways toward discerning the dominant atmospheric-loss mechanism at work. Both of these pathways involve using transit multiplicity as a diagnostic, in examining the results of follow-up atmospheric and radial velocity surveys.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献