Variations in the Radius Distribution of Single- and Compact Multiple-transiting Planets

Author:

Liberles Benjamin T.ORCID,Dittmann Jason A.ORCID,Elardo Stephen M.ORCID,Ballard SarahORCID

Abstract

Abstract Previous work has established the enhanced occurrence of compact systems of multiple small exoplanets around metal-poor stars. Understanding the origin of this effect in the planet formation process is a topic of ongoing research. Here we consider the radii of planets residing in systems of multiple transiting planets, compared to those residing in single-transiting systems, with a particular focus on late-type host stars. We investigate whether the two radius distributions are consistent with being drawn from the same underlying planetary population. We construct a planetary sample of 290 planets around late K and M dwarfs containing 149 planets from single-transiting planetary systems and 141 planets from multi-transiting compact multiple planetary systems (54 compact multiples). We performed a two-sample Kolmogorov–Smirnov test, Mann–Whitney U test, and Anderson–Darling k-sampling test on the radius distributions of our two samples. We find statistical evidence (p < 0.0026) that planets in compact multiple systems are larger, on average, than their single-transiting counterparts for planets with R p < 6 R . We determine that the offset cannot be explained by detection bias. We investigate whether this effect could be explained via more efficient outgassing of a secondary atmosphere in compact multiple systems due to the stress and strain forces of interplanetary tides on planetary interiors. We find that this effect is insufficient to explain our observations without significant enrichment in H2O compared to Earth-like bulk composition.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3