Architecture of Planetary Systems Predicted from Protoplanetary Disks Observed with ALMA. I. Mass of the Possible Planets Embedded in the Dust Gap

Author:

Wang ShijieORCID,Kanagawa Kazuhiro D.ORCID,Suto YasushiORCID

Abstract

Abstract Recent ALMA observations have identified a variety of dust gaps in protoplanetary disks, which are commonly interpreted to be generated by unobserved planets. Predicting mass of such embedded planets is of fundamental importance in comparing those disk architectures with the observed diversity of exoplanets. The prediction, however, depends on the assumption that whether the same gap structure exists in the dust component alone or in the gas component as well. We assume a planet can only open a gap in the gas component when its mass exceeds the pebble isolation mass by considering the core-accretion scenario. We then propose two criteria to distinguish if a gap is opened in the dust disk alone or the gas gap as well when observation data on the gas profile is not available. We apply the criteria to 35 disk systems with a total of 55 gaps compiled from previous studies and classify each gap into four different groups. The classification of the observed gaps allows us to predict the mass of embedded planets in a consistent manner with the pebble isolation mass. We find that outer gaps are mostly dust alone, while inner gaps are more likely to be associated with a gas gap as well. The distribution of such embedded planets is very different from the architecture of the observed planetary systems, suggesting that significant inward migration is required in their evolution.

Funder

CSC ∣ Chinese Government Scholarship

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3