Direct Formation of Planetary Embryos in Self-gravitating Disks

Author:

Baehr HansORCID,Zhu ZhaohuanORCID,Yang Chao-ChinORCID

Abstract

Abstract Giant planets have been discovered at large separations from the central star. Moreover, a striking number of young circumstellar disks have gas and/or dust gaps at large orbital separations, potentially driven by embedded planetary objects. To form massive planets at large orbital separations through core accretion within the disk lifetime, however, an early solid body to seed pebble and gas accretion is desirable. Young protoplanetary disks are likely self-gravitating, and these gravitoturbulent disks may efficiently concentrate solid material at the midplane driven by spiral waves. We run 3D local hydrodynamical simulations of gravitoturbulent disks with Lagrangian dust particles to determine whether particle and gas self-gravity can lead to the formation of dense solid bodies, seeding later planet formation. When self-gravity between dust particles is included, solids of size St = 0.1–1 concentrate within the gravitoturbulent spiral features and collapse under their own self-gravity into dense clumps up to several M in mass at wide orbits. Simulations with dust that drift most efficiently, St = 1, form the most massive clouds of particles, while simulations with smaller dust particles, St = 0.1, have clumps with masses an order of magnitude lower. When the effect of dust backreaction onto the gas is included, dust clumps become smaller by a factor of a few but more numerous. The existence of large solid bodies at an early stage of the disk can accelerate the planet formation process, particularly at wide orbital separations, and potentially explain planets distant from the central stars and young protoplanetary disks with substructures.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3