Multiphase Outflows in High-redshift Quasar Host Galaxies

Author:

Vayner AndreyORCID,Zakamska NadiaORCID,Wright Shelley A.ORCID,Armus LeeORCID,Murray Norman,Walth GregoryORCID

Abstract

Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of six radio-loud quasar host galaxies at z = 1.4–2.3. We combine the kiloparsec-scale resolution ALMA observations with high spatial resolution adaptive optics integral field spectrograph data of the ionized gas. We detect molecular gas emission in five quasar host galaxies and resolve the molecular interstellar medium using the CO (3–2) or CO (4–3) rotational transitions. Clumpy molecular outflows are detected in four quasar host galaxies and a merger system 21 kpc away from one quasar. Between the ionized and cold molecular gas phases, the majority of the outflowing mass is in a molecular phase, while for three out of four detected multiphase gas outflows, the majority of the kinetic luminosity and momentum flux is in the ionized phase. Combining the energetics of the multiphase outflows, we find that their driving mechanism is consistent with energy-conserving shocks produced by the impact of the quasar jets with the gas in the galaxy. By assessing the molecular gas mass to the dynamics of the outflows, we estimate a molecular gas depletion timescale of a few megayears. The gas outflow rates exceed the star formation rates, suggesting that quasar feedback is a major mechanism of gas depletion at the present time. The coupling efficiency between the kinetic luminosity of the outflows and the bolometric luminosity of the quasar of 0.1%–1% is consistent with theoretical predictions. Studying multiphase gas outflows at high redshift is important for quantifying the impact of negative feedback in shaping the evolution of massive galaxies.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3