Abstract
Abstract
A solar active region (AR) may produce multiple notable flares during its passage across the solar disk. We investigate successive flares from flare-eruptive ARs, and explore their relationship with solar magnetic parameters. We examine six ARs in this study, each with at least one major flare above X1.0. The Space-weather HMI Active Region Patch (SHARP) is employed in this study to parameterize the ARs. We aim to identify the most flare-related SHARP parameters and lay foundation for future practical flare forecasts. We first evaluate the correlation coefficients between the SHARP parameters and the successive flare production. Then we adopt a Natural Gradient Boost (NGBoost) method to analyze the relationship between the SHARP parameters and the successive flare bursts. Based on the correlation analysis and the importance distribution returned from NGBoost, we select the eight most flare-related SHARP parameters. Finally, we discuss the physical meanings of the eight selected parameters and their relationship with flare production.
Funder
National Natural Science Foundation of China
the Strategic Priority Research Program of Chinese Academy of Sciences
National Key Research and Development Program of China
MOST ∣ National Key Research and Development Program of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献