Abstract
Abstract
Solar flares, often accompanied by coronal mass ejections and other solar phenomena, are one of the most important sources affecting space weather. It is important to investigate the forecast approach of solar flares to mitigate their destructive effect on the Earth. Statistical analysis, associated with data from 2010 to 2017 in Space-weather HMI Active Region Patches (SHARPs) collected by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, reveals that there is a distribution divergence between the two types of active regions (ARs) of solar flares. A two-stage hierarchical prediction framework is formulated to better utilize this intrinsic distribution information. Specially, we pick up the ARs where at least one solar flare event occurs within the next 48 hr as flaring ARs through balanced random forest and naive Bayesian methods and then predict the events from flaring ARs by a cascade module of learning models. The empirical evaluation of SHARPs data from 2016 to 2019 verifies the promising performance of our framework, e.g., 0.727 for the true skill statistic.
Funder
MOST ∣ National Natural Science Foundation of China
Open Foundation of Hubei Key Laboratory of Applied Mathematics
Fundamental Research Funds for the Central Universities of China
HZAU-AGIS Cooperation Fund
Youth Innovation Promotion Association CAS, the Key Research Program of the Chinese Academy of Sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics