Observational Constraints on the Maximum Energies of Accelerated Particles in Supernova Remnants: Low Maximum Energies and a Large Variety

Author:

Suzuki HiromasaORCID,Bamba AyaORCID,Yamazaki RyoORCID,Ohira YutakaORCID

Abstract

Abstract Supernova remnants (SNRs) are thought to be the most promising sources of Galactic cosmic rays. One of the principal questions is whether they are accelerating particles up to the maximum energy of Galactic cosmic rays (∼PeV). In this work, a systematic study of gamma-ray-emitting SNRs is conducted as an advanced study of Suzuki et al. Our purpose is to newly measure the evolution of maximum particle energies with increased statistics and better age estimates. We model their gamma-ray spectra to constrain the particle-acceleration parameters. Two candidates of the maximum energy of freshly accelerated particles, the gamma-ray cutoff and break energies, are found to be well below PeV. We also test a spectral model that includes both the freshly accelerated and escaping particles to estimate the maximum energies more reliably, but no tighter constraints are obtained with current statistics. The average time dependences of the cutoff energy (∝t −0.81±0.24) and break energy (∝t −0.77±0.23) cannot be explained with the simplest acceleration condition (Bohm limit) and require shock–ISM (interstellar medium) interaction. The average maximum energy during lifetime is found to be ≲20 TeV ( t M / 1 kyr ) 0.8 with t M being the age at the maximum, which reaches PeV if t M ≲ 10 yr. The maximum energies during lifetime are suggested to have a variety of 1.1–1.8 dex from object to object. Although we cannot isolate the cause of this variety, this work provides an important clue to understanding the microphysics of particle acceleration in SNRs.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3