Multiwavelength studies of G298.6−0.0: An old GeV supernova remnant interacting with molecular clouds

Author:

Yeung Paul K H1,Bamba Aya12,Sano Hidetoshi3

Affiliation:

1. Department of Physics, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2. Research Center for the Early Universe, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

3. Faculty of Engineering, Gifu University , 1-1 Yanagido, Gifu, Gifu 501-1193, Japan

Abstract

Abstract Hadronic γ-ray sources associated with supernova remnants (SNRs) can serve as stopwatches for the escape of cosmic rays from SNRs, which gradually develops from highest-energy particles to lowest-energy particles with time. In this work, we analyze the 13.7 yr Fermi-LAT data to investigate the γ-ray feature in/around the SNR G298.6−0.0 region. With γ-ray spatial analyses, we detect three point-like components. Among them, Src-NE is at the eastern SNR shell, and Src-NW is adjacent to the western edge of this SNR. Src-NE and Src-NW demonstrate spectral breaks at energies around/below 1.8 GeV, suggesting an old SNR age of >10 kyr. We also look into the X-ray emission from the G298.6−0.0 region, with the Chandra-ACIS data. We detected an extended keV source having a centrally filled structure inside the radio shell. The X-ray spectra are well fitted by a model which assumes a collisional ionization equilibrium of the thermal plasma, further supporting an old SNR age. Based on our analyses of the NANTEN CO- and ATCA-Parkes H i-line data, we determined a kinematic distance of ∼10.1 kpc from us to G298.6−0.0. This distance entails a large physical radius of the SNR of ∼15.5 pc, which is additional evidence for an old age of >10 kyr. Besides this, the CO data cube enables us to three-dimensionally locate the molecular clouds (MCs) which are potentially interacting with SNR G298.6−0.0 and could account for the hadronic γ-rays detected at Src-NE or Src-NW. Furthermore, the multiwavelength observational properties unanimously imply that the SNR–MC interaction occurs mainly in the north-eastern direction.

Funder

Australian Government

CSIRO

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3