Detectable Data-driven Features in the Primordial Scalar Power Spectrum

Author:

Esmaeilian Muhammad Sadegh,Farhang Marzieh,Khodabakhshi Shirin

Abstract

Abstract In this work we explore the power of future large-scale surveys to constrain possible deviations from the standard single-field slow-roll inflationary scenario. Specifically, we parameterize possible fluctuations around the almost scale-invariant primordial scalar power spectrum in a model-independent way. We then use their imprints on the simulated matter distribution, as observed by the galaxy clustering and weak lensing probes of Euclid and the Square Kilometer Array, to construct the best constrainable patterns of fluctuations. For comparison, we make similar forecasts for a futuristic CMB-S4-like survey. The modes are found to have similar, yet shifted, patterns, with increasing number of wiggles as the mode number increases. The forecasted constraints are tightest for cosmic microwave background anisotropies and galaxy clustering, depending on the details of the specifications of the survey. As case studies, we explore how two greatly different physically motivated patterns of primordial power spectrum are reconstructed by the proposed modes. We propose a figure of merit based on the amount of information delivered by the modes to truncate the mode hierarchy, which is automatically generated by the analysis.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3