Planck2018 results

Author:

,Akrami Y.,Arroja F.,Ashdown M.,Aumont J.,Baccigalupi C.,Ballardini M.,Banday A. J.,Barreiro R. B.,Bartolo N.,Basak S.,Benabed K.,Bernard J.-P.,Bersanelli M.,Bielewicz P.,Bock J. J.,Bond J. R.,Borrill J.,Bouchet F. R.,Boulanger F.,Bucher M.,Burigana C.,Butler R. C.,Calabrese E.,Cardoso J.-F.,Carron J.,Challinor A.,Chiang H. C.,Colombo L. P. L.,Combet C.,Contreras D.,Crill B. P.,Cuttaia F.,de Bernardis P.,de Zotti G.,Delabrouille J.,Delouis J.-M.,Di Valentino E.,Diego J. M.,Donzelli S.,Doré O.,Douspis M.,Ducout A.,Dupac X.,Dusini S.,Efstathiou G.,Elsner F.,Enßlin T. A.,Eriksen H. K.,Fantaye Y.,Fergusson J.,Fernandez-Cobos R.,Finelli F.,Forastieri F.,Frailis M.,Franceschi E.,Frolov A.,Galeotta S.,Galli S.,Ganga K.,Gauthier C.,Génova-Santos R. T.,Gerbino M.,Ghosh T.,González-Nuevo J.,Górski K. M.,Gratton S.,Gruppuso A.,Gudmundsson J. E.,Hamann J.,Handley W.,Hansen F. K.,Herranz D.,Hivon E.,Hooper D. C.,Huang Z.,Jaffe A. H.,Jones W. C.,Keihänen E.,Keskitalo R.,Kiiveri K.,Kim J.,Kisner T. S.,Krachmalnicoff N.,Kunz M.,Kurki-Suonio H.,Lagache G.,Lamarre J.-M.,Lasenby A.,Lattanzi M.,Lawrence C. R.,Le Jeune M.,Lesgourgues J.,Levrier F.,Lewis A.,Liguori M.,Lilje P. B.,Lindholm V.,López-Caniego M.,Lubin P. M.,Ma Y.-Z.,Macías-Pérez J. F.,Maggio G.,Maino D.,Mandolesi N.,Mangilli A.,Marcos-Caballero A.,Maris M.,Martin P. G.,Martínez-González E.,Matarrese S.,Mauri N.,McEwen J. D.,Meerburg P. D.,Meinhold P. R.,Melchiorri A.,Mennella A.,Migliaccio M.,Mitra S.,Miville-Deschênes M.-A.,Molinari D.,Moneti A.,Montier L.,Morgante G.,Moss A.,Münchmeyer M.,Natoli P.,Nørgaard-Nielsen H. U.,Pagano L.,Paoletti D.,Partridge B.,Patanchon G.,Peiris H. V.,Perrotta F.,Pettorino V.,Piacentini F.,Polastri L.,Polenta G.,Puget J.-L.,Rachen J. P.,Reinecke M.,Remazeilles M.,Renzi A.,Rocha G.,Rosset C.,Roudier G.,Rubiño-Martín J. A.,Ruiz-Granados B.,Salvati L.,Sandri M.,Savelainen M.,Scott D.,Shellard E. P. S.,Shiraishi M.,Sirignano C.,Sirri G.,Spencer L. D.,Sunyaev R.,Suur-Uski A.-S.,Tauber J. A.,Tavagnacco D.,Tenti M.,Toffolatti L.,Tomasi M.,Trombetti T.,Valiviita J.,Van Tent B.,Vielva P.,Villa F.,Vittorio N.,Wandelt B. D.,Wehus I. K.,White S. D. M.,Zacchei A.,Zibin J. P.,Zonca A.

Abstract

We report on the implications for cosmic inflation of the 2018 release of thePlanckcosmic microwave background (CMB) anisotropy measurements. The results are fully consistent with those reported using the data from the two previousPlanckcosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.Plancktemperature, polarization, and lensing data determine the spectral index of scalar perturbations to bens = 0.9649 ± 0.0042 at 68% CL. We find no evidence for a scale dependence ofns, either as a running or as a running of the running. The Universe is found to be consistent with spatial flatness with a precision of 0.4% at 95% CL by combiningPlanckwith a compilation of baryon acoustic oscillation data. ThePlanck95% CL upper limit on the tensor-to-scalar ratio,r0.002 <  0.10, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtainr0.002 <  0.056. In the framework of standard single-field inflationary models with Einstein gravity, these results imply that: (a) the predictions of slow-roll models with a concave potential,V″(ϕ) < 0, are increasingly favoured by the data; and (b) based on two different methods for reconstructing the inflaton potential, we find no evidence for dynamics beyond slow roll. Three different methods for the non-parametric reconstruction of the primordial power spectrum consistently confirm a pure power law in the range of comoving scales 0.005 Mpc−1 ≲ k ≲ 0.2 Mpc−1. A complementary analysis also finds no evidence for theoretically motivated parameterized features in thePlanckpower spectra. For the case of oscillatory features that are logarithmic or linear ink, this result is further strengthened by a new combined analysis including thePlanckbispectrum data. The newPlanckpolarization data provide a stringent test of the adiabaticity of the initial conditions for the cosmological fluctuations. In correlated, mixed adiabatic and isocurvature models, the non-adiabatic contribution to the observed CMB temperature variance is constrained to 1.3%, 1.7%, and 1.7% at 95% CL for cold dark matter, neutrino density, and neutrino velocity, respectively.Planckpower spectra plus lensing set constraints on the amplitude of compensated cold dark matter-baryon isocurvature perturbations that are consistent with current complementary measurements. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadupolar modulation of the primordial fluctuations. However, the polarization data do not support physical models for a scale-dependent dipolar modulation. All these findings support the key predictions of the standard single-field inflationary models, which will be further tested by future cosmological observations.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1726 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dissipative quintessential cosmic inflation;Physics of the Dark Universe;2024-12

2. Warm inflation in a Universe with a Weylian boundary;Physics of the Dark Universe;2024-12

3. Hamilton–Jacobi formalism for k-inflation;Physics of the Dark Universe;2024-12

4. Quantum gravity effects on the tachyon inflation from thermodynamic perspective;Physics of the Dark Universe;2024-12

5. Observational constraints on asymptotic safety inflation in gravity’s rainbow;Physics of the Dark Universe;2024-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3