Abstract
Abstract
We present the results of Monitor of All-sky X-ray Image (MAXI) monitoring and two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the recently discovered faint X-ray transient MAXI J1848015. Analysis of the MAXI light curve shows that the source underwent a rapid flux increase beginning on 2020 December 20, followed by a rapid decrease in flux after only ∼5 days. NuSTAR observations reveal that the source transitioned from a bright soft state with unabsorbed, bolometric (0.1–100 keV) flux F = 6.9 ± 0.1 × 10−10 erg cm−2 s−1, to a low hard state with flux F = 2.85 ± 0.04 × 10−10 erg cm−2 s−1. Given a distance of 3.3 kpc, inferred via association of the source with the GLIMPSE-C01 cluster, these fluxes correspond to an Eddington fraction of the order of 10−3 for an accreting neutron star (NS) of mass M = 1.4M
⊙, or even lower for a more massive accretor. However, the source spectra exhibit strong relativistic reflection features, indicating the presence of an accretion disk that extends close to the accretor, for which we measure a high spin, a = 0.967 ± 0.013. In addition to a change in flux and spectral shape, we find evidence for other changes between the soft and hard states, including moderate disk truncation with the inner disk radius increasing from R
in ≈ 3 R
g to R
in ≈ 8 R
g, narrow Fe emission whose centroid decreases from 6.8 ± 0.1 keV to 6.3 ± 0.1 keV, and an increase in low-frequency (10−3–10−1 Hz) variability. Due to the high spin, we conclude that the source is likely to be a black hole rather than an NS, and we discuss physical interpretations of the low apparent luminosity as well as the narrow Fe emission.
Funder
National Aeronautics and Space Administration
MEXT ∣ JAXA ∣ Institute of Space and Astronautical Science
SI ∣ Smithsonian Astrophysical Observatory
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献