Systematically Revisiting All NuSTAR Spins of Black Holes in X-Ray Binaries

Author:

Draghis Paul A.ORCID,Miller Jon M.ORCID,Costantini ElisaORCID,Gallo Luigi C.,Reynolds MarkORCID,Tomsick John A.ORCID,Zoghbi AbderahmenORCID

Abstract

Abstract We extend our recent work on black hole spin in X-ray binary systems to include an analysis of 189 archival NuSTAR observations from 24 sources. Using self-consistent data reduction pipelines, spectral models, and statistical techniques, we report an unprecedented and uniform sample of 36 stellar-mass black hole spin measurements based on relativistic reflection. This treatment suggests that prior reports of low spins in a small number of sources were generally erroneous: our comprehensive treatment finds that those sources tend to harbor black holes with high spin values. Overall, within 1σ uncertainty, ∼86% of the sample are consistent with a ≥ 0.95, ∼94% of the sample are consistent with a ≥ 0.9, and 100% are consistent with a ≥ 0.7 (the theoretical maximum for neutron stars; a = cJ/GM 2). We also find that the high-mass X-ray binaries (those with A-, B-, or O-type companions) are consistent with a ≥ 0.9 within the 1σ errors; this is in agreement with the low-mass X-ray binary population and may be especially important for comparisons to black holes discovered in gravitational wave events. In some cases, different spectra from the same source yield similar spin measurements but conflicting values for the inclination of the inner disk; we suggest that this is due to variable disk winds obscuring the blue wing of the relativistic Fe K emission line. We discuss the implications of our measurements, the unique view of systematic uncertainties enabled by our treatment, and future efforts to characterize black hole spins with new missions.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3