An Efficient Method for Fitting Radiation-mediated Shocks to Gamma-Ray Burst Data: The Kompaneets RMS Approximation

Author:

Samuelsson FilipORCID,Lundman ChristofferORCID,Ryde FelixORCID

Abstract

Abstract Shocks that occur below a gamma-ray burst (GRB) jet photosphere are mediated by radiation. Such radiation-mediated shocks (RMSs) could be responsible for shaping the prompt GRB emission. Although well studied theoretically, RMS models have not yet been fitted to data owing to the computational cost of simulating RMSs from first principles. Here we bridge the gap between theory and observations by developing an approximate method capable of accurately reproducing radiation spectra from mildly relativistic (in the shock frame) or slower RMSs, called the Kompaneets RMS approximation (KRA). The approximation is based on the similarities between thermal Comptonization of radiation and the bulk Comptonization that occurs inside an RMS. We validate the method by comparing simulated KRA radiation spectra to first-principle radiation hydrodynamics simulations, finding excellent agreement both inside the RMS and in the RMS downstream. The KRA is then applied to a shock scenario inside a GRB jet, allowing for fast and efficient fitting to GRB data. We illustrate the capabilities of the developed method by performing a fit to a nonthermal spectrum in GRB 150314A. The fit allows us to uncover the physical properties of the RMS responsible for the prompt emission, such as the shock speed and the upstream plasma temperature.

Funder

The Swedish National Space Agency

The Swedish Research Council

The Swedish National Space Board

Göran Gustafsson Foundation for Research in Natural Sciences and Medicine

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3