Abstract
Abstract
Shocks that occur below a gamma-ray burst (GRB) jet photosphere are mediated by radiation. Such radiation-mediated shocks (RMSs) could be responsible for shaping the prompt GRB emission. Although well studied theoretically, RMS models have not yet been fitted to data owing to the computational cost of simulating RMSs from first principles. Here we bridge the gap between theory and observations by developing an approximate method capable of accurately reproducing radiation spectra from mildly relativistic (in the shock frame) or slower RMSs, called the Kompaneets RMS approximation (KRA). The approximation is based on the similarities between thermal Comptonization of radiation and the bulk Comptonization that occurs inside an RMS. We validate the method by comparing simulated KRA radiation spectra to first-principle radiation hydrodynamics simulations, finding excellent agreement both inside the RMS and in the RMS downstream. The KRA is then applied to a shock scenario inside a GRB jet, allowing for fast and efficient fitting to GRB data. We illustrate the capabilities of the developed method by performing a fit to a nonthermal spectrum in GRB 150314A. The fit allows us to uncover the physical properties of the RMS responsible for the prompt emission, such as the shock speed and the upstream plasma temperature.
Funder
The Swedish National Space Agency
The Swedish Research Council
The Swedish National Space Board
Göran Gustafsson Foundation for Research in Natural Sciences and Medicine
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献