Numerical Simulation of Photospheric Emission in Long Gamma-Ray Bursts: Prompt Correlations, Spectral Shapes, and Polarizations

Author:

Ito HirotakaORCID,Matsumoto JinORCID,Nagataki ShigehiroORCID,Warren Donald C.,Barkov Maxim V.ORCID,Yonetoku DaisukeORCID

Abstract

Abstract We explore the properties of photospheric emission in the context of long gamma-ray bursts (GRBs) using three numerical models that combine relativistic hydrodynamical simulations and Monte Carlo radiation transfer calculations in three dimensions. Our simulations confirm that photospheric emission gives rise to correlations between the spectral peak energy and luminosity that agree with the observed Yonetoku, Amati, and Golenetskii correlations. It is also shown that the spectral peak energy and luminosity correlate with the bulk Lorentz factor, as indicated in the literature. On the other hand, synthetic spectral shapes tend to be narrower than those of the observations. This result indicates that an additional physical process that can provide nonthermal broadening is needed to reproduce the spectral features. Furthermore, the polarization analysis finds that, while the degree of polarization is low for the emission from the jet core (Π < 4%), it tends to increase with viewing angle outside of the core and can be as high as Π ∼ 20%–40% in an extreme case. This suggests that the typical GRBs show systematically low polarization compared to softer, dimmer counterparts (X-ray-rich GRBs and X-ray flashes). Interestingly, our simulations indicate that photospheric emission exhibits large temporal variation in the polarization position angle (Δψ ∼ 90°), which may be compatible with those inferred in observations. A notable energy dependence of the polarization property is another characteristic feature found in the current study. Particularly, the difference in the position angle among different energy bands can be as large as ∼90°.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3