A Limited Habitable Zone for Complex Life

Author:

Schwieterman Edward W.ORCID,Reinhard Christopher T.,Olson Stephanie L.ORCID,Harman Chester E.ORCID,Lyons Timothy W.

Abstract

Abstract The habitable zone (HZ) is commonly defined as the range of distances from a host star within which liquid water, a key requirement for life, may exist on a planet’s surface. Substantially more CO2 than present in Earth’s modern atmosphere is required to maintain clement temperatures for most of the HZ, with several bars required at the outer edge. However, most complex aerobic life on Earth is limited by CO2 concentrations of just fractions of a bar. At the same time, most exoplanets in the traditional HZ reside in proximity to M dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to promote greater abundances of gases that can be toxic in the atmospheres of orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for complex aerobic life is likely limited relative to that for microbial life. We use a 1D radiative-convective climate and photochemical models to circumscribe a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a range of organisms as a proof of concept. We find that for CO2 tolerances of 0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the conventional HZ for a Sun-like star, and that CO concentrations may limit some complex life throughout the entire HZ of the coolest M dwarfs. These results cast new light on the likely distribution of complex life in the universe and have important ramifications for the search for exoplanet biosignatures and technosignatures.

Funder

NASA Astrobiology Institute

NASA Astrobiology Program

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lethal Surface Ozone Concentrations Are Possible on Habitable Zone Exoplanets;The Planetary Science Journal;2024-07-01

2. Artificial Greenhouse Gases as Exoplanet Technosignatures;The Astrophysical Journal;2024-06-25

3. Rebuilding the Habitable Zone from the Bottom up with Computational Zones;Astrobiology;2024-06-01

4. Terrestrial planet atmospheres;Reference Module in Materials Science and Materials Engineering;2024

5. Sustained and comparative habitability beyond Earth;Nature Astronomy;2023-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3