Abstract
Abstract
Identification of chemically similar stars using elemental abundances is core to many pursuits within Galactic archeology. However, measuring the chemical likeness of stars using abundances directly is limited by systematic imprints of imperfect synthetic spectra in abundance derivation. We present a novel data-driven model that is capable of identifying chemically similar stars from spectra alone. We call this relevant scaled component analysis (RSCA). RSCA finds a mapping from stellar spectra to a representation that optimizes recovery of known open clusters. By design, RSCA amplifies factors of chemical abundance variation and minimizes those of nonchemical parameters, such as instrument systematics. The resultant representation of stellar spectra can therefore be used for precise measurements of chemical similarity between stars. We validate RSCA using 185 cluster stars in 22 open clusters in the Apache Point Observatory Galactic Evolution Experiment survey. We quantify our performance in measuring chemical similarity using a reference set of 151,145 field stars. We find that our representation identifies known stellar siblings more effectively than stellar-abundance measurements. Using RSCA, 1.8% of pairs of field stars are as similar as birth siblings, compared to 2.3% when using stellar-abundance labels. We find that almost all of the information within spectra leveraged by RSCA fits into a two-dimensional basis, which we link to [Fe/H] and α-element abundances. We conclude that chemical tagging of stars to their birth clusters remains prohibitive. However, using the spectra has noticeable gain, and our approach is poised to benefit from larger data sets and improved algorithm designs.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献