ML-MOC: Machine Learning (kNN and GMM) based Membership determination for Open Clusters

Author:

Agarwal Manan1ORCID,Rao Khushboo K1,Vaidya Kaushar1ORCID,Bhattacharya Souradeep2ORCID

Affiliation:

1. Department of Physics, Birla Institute of Technology and Science – Pilani, Rajasthan 333031, India

2. Inter University Centre for Astronomy and Astrophysics, Ganeshkhind, Post Bag 4, Pune 411007, India

Abstract

ABSTRACT The existing open-cluster membership determination algorithms are either prior dependent on some known parameters of clusters or are not automatable to large samples of clusters. In this paper, we present ml-moc, a new machine-learning-based approach to identify likely members of open clusters using the Gaia DR2 data and no a priori information about cluster parameters. We use the k-nearest neighbour (kNN) algorithm and the Gaussian mixture model (GMM) on high-precision proper motions and parallax measurements from the Gaia DR2 data to determine the membership probabilities of individual sources down to G ∼ 20 mag. To validate the developed method, we apply it to 15 open clusters: M67, NGC 2099, NGC 2141, NGC 2243, NGC 2539, NGC 6253, NGC 6405, NGC 6791, NGC 7044, NGC 7142, NGC 752, Blanco 1, Berkeley 18, IC 4651, and Hyades. These clusters differ in terms of their ages, distances, metallicities, and extinctions and cover a wide parameter space in proper motions and parallaxes with respect to the field population. The extracted members produce clean colour–magnitude diagrams and our astrometric parameters of the clusters are in good agreement with the values derived in previous work. The estimated degree of contamination in the extracted members ranges between 2 ${{\ \rm per\ cent}}$ and 12 ${{\ \rm per\ cent}}$. The results show that ml-moc is a reliable approach to segregate open-cluster members from field stars.

Funder

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3