The Hateful Eight: Connecting Massive Substructures in Galaxy Clusters like A2744 to Their Dynamical Assembly State Using the Magneticum Simulations

Author:

Kimmig Lucas C.,Remus Rhea-Silvia,Dolag Klaus,Biffi VeronicaORCID

Abstract

Abstract Substructures are known to be good tracers for the dynamical states and recent accretion histories of the most massive collapsed structures in the universe, galaxy clusters. Observations find extremely massive substructures in some clusters, especially Abell 2744 (A2744), which are potentially in tension with the ΛCDM paradigm because they are not found in simulations directly. However, the methods to measure substructure masses strongly differ between observations and simulations. Using the fully hydrodynamical cosmological simulation suite Magneticum Pathfinder, we develop a method to measure substructure masses in projection from simulations, similarly to the observational approach. We identify a simulated A2744 counterpart that not only has eight substructures of similar mass fractions but also exhibits similar features in the hot gas component. This cluster formed only recently through a major merger together with at least six massive minor merger events since z = 1, where previously the most massive component had a mass of less than 1 × 1014 M . We show that the mass fraction of all substructures and of the eighth substructure separately are excellent tracers for the dynamical state and assembly history for all galaxy cluster mass ranges, with high fractions indicating merger events within the last 2 Gyr. Finally, we demonstrate that the differences between subhalo masses measured directly from simulations as bound and those measured in projection are due to methodology, with the latter generally 2–3 times larger than the former. We provide a predictor function to estimate projected substructure masses from SubFind masses for future comparison studies between simulations and observations.

Funder

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3