Early-forming Massive Stars Suppress Star Formation and Hierarchical Cluster Assembly

Author:

Lewis Sean C.ORCID,McMillan Stephen L. W.ORCID,Low Mordecai-Mark MacORCID,Cournoyer-Cloutier ClaudeORCID,Polak BrookeORCID,Wilhelm Martijn J. C.ORCID,Tran AaronORCID,Sills AlisonORCID,Zwart Simon PortegiesORCID,Klessen Ralf S.ORCID,Wall Joshua E.ORCID

Abstract

Abstract Feedback from massive stars plays an important role in the formation of star clusters. Whether a very massive star is born early or late in the cluster formation timeline has profound implications for the star cluster formation and assembly processes. We carry out a controlled experiment to characterize the effects of early-forming massive stars on star cluster formation. We use the star formation software suite Torch, combining self-gravitating magnetohydrodynamics, ray-tracing radiative transfer, N-body dynamics, and stellar feedback, to model four initially identical 104 M giant molecular clouds with a Gaussian density profile peaking at 521.5 cm−3. Using the Torch software suite through the AMUSE framework, we modify three of the models, to ensure that the first star that forms is very massive (50, 70, and 100 M ). Early-forming massive stars disrupt the natal gas structure, resulting in fast evacuation of the gas from the star-forming region. The star formation rate is suppressed, reducing the total mass of the stars formed. Our fiducial control model, without an early massive star, has a larger star formation rate and total efficiency by up to a factor of 3, and a higher average star formation efficiency per freefall time by up to a factor of 7. Early-forming massive stars promote the buildup of spatially separate and gravitationally unbound subclusters, while the control model forms a single massive cluster.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3