High-energy Electromagnetic, Neutrino, and Cosmic-Ray Emission by Stellar-mass Black Holes in Disks of Active Galactic Nuclei

Author:

Tagawa HiromichiORCID,Kimura Shigeo S.ORCID,Haiman ZoltánORCID

Abstract

Abstract Some Seyfert galaxies are detected in high-energy gamma rays, but the mechanism and site of gamma-ray emission are unknown. Also, the origins of the cosmic high-energy neutrino and MeV gamma-ray backgrounds have been veiled in mystery since their discoveries. We propose emission from stellar-mass BHs (sBHs) embedded in disks of active galactic nuclei as their possible sources. These sBHs are predicted to launch jets due to the Blandford–Znajek mechanism, which can produce intense electromagnetic, neutrino, and cosmic-ray emissions. We investigate whether these emissions can be the sources of cosmic high-energy particles. We find that emission from internal shocks in the jets can explain gamma rays from nearby radio-quiet Seyfert galaxies including NGC 1068, if the Lorentz factor of the jets (Γj) is high. On the other hand, for moderate Γj, the emission can significantly contribute to the background gamma-ray and neutrino intensities in the ~MeV and ≲PeV bands, respectively. Furthermore, for moderate Γj with efficient amplification of the magnetic field and cosmic-ray acceleration, the neutrino emission from NGC 1068 and the ultrahigh-energy cosmic rays can be explained. These results suggest that the neutrino flux from NGC 1068 as well as the background intensities of MeV gamma rays, neutrinos, and the ultrahigh-energy cosmic rays can be explained by a unified model. Future MeV gamma-ray satellites will test our scenario for neutrino emission.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3