Possible jet contribution to the γ-ray luminosity in NGC 1068

Author:

Salvatore S.ORCID,Eichmann B.,Rodrigues X.ORCID,Dettmar R.-J.ORCID,Becker Tjus J.ORCID

Abstract

NGC 1068 is a nearby, widely studied Seyfert II galaxy presenting radio, infrared, X-ray, and γ-ray emission, along with strong evidence for high-energy neutrino emission. Recently, the evidence for neutrino emission was explained in a multimessenger model, whereby the neutrinos originate from the corona of the active galactic nucleus. In this environment, γ-rays are strongly absorbed, so that an additional contribution is necessary, for instance, from the circumnuclear starburst ring. In this work, we discuss whether the radio jet can be an alternative source of the γ-rays between about 0.1 and 100 GeV, as observed by Fermi-LAT. In particular, we include both leptonic and hadronic processes, namely, accounting for inverse Compton emission and signatures from pp as well as interactions. In order to constrain our calculations, we used VLBA and ALMA observations of the radio knot structures, which are spatially resolved at different distances from the supermassive black hole. Our results show that the best leptonic scenario for the prediction of the Fermi-LAT data is provided by the radio knot closest to the central engine. For that to be the case, a magnetic field strength of ∼1 mG is needed as well as a strong spectral softening of the relativistic electron distribution at (1 − 10) GeV. However, we show that neither such a weak magnetic field strength, nor such a strong softening is expected for that knot. A possible explanation for the ∼10 GeV γ-rays could potentially be provided by hadronic pion production in case of a gas density ≳104 cm−3. Nonetheless, this process is not found to contribute significantly to the low-energy end of the Fermi-LAT range. We conclude that the emission sites in the jet are not sufficient to explain the γ-rays across the whole Fermi-LAT energy band.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3