Cosmic-Ray Transport in Heliospheric Magnetic Structures. III. Implications of Solar Magnetograms for the Drifts of Cosmic Rays

Author:

Kopp AndreasORCID,Raath Jan Louis,Fichtner HorstORCID,Potgieter Marius S.ORCID,Ferreira Stefan E. S.ORCID,Heber BerndORCID

Abstract

Abstract The transport of energetic particles in the heliosphere is reviewed regarding the treatment of their drifts over an entire solar cycle including the periods around solar maximum, when the tilt angles of the heliospheric current sheet increase to large values and the sign of the magnetic polarity changes. While gradient and curvature drifts are well-established elements of the propagation of cosmic rays in the heliospheric magnetic field, their perturbation by the solar-activity-induced large-scale distortions of dipole-like field configurations and by magnetic turbulence is an open problem. Various empirical or phenomenological approaches have been suggested, but either lack a theory-based motivation or have been shown to be incompatible with measurements. We propose a new approach of more closely investigating solar magnetograms obtained from GONG maps, leading to a new definition of (i) tilt angles that may exceed those provided by the Wilcox Solar Observatory during high activity and of (ii) a “noninteger sign” that can be used to reduce the drifts during these periods as well as to provide a refinement of the magnetic field polarity. The change of sign from A < 0 to A > 0 of solar cycle 24 can be in this way localized to occur between Carrington Rotations 2139 and 2140 in mid 2013. This treatment is fully consistent in the sense that the transport modeling uses the same input data to formulate the boundary conditions at the heliobase as do the magnetohydrodynamic models of the solar wind and the embedded heliospheric magnetic field that exploit solar magnetograms as inner boundary conditions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3