The strong suppression of galactic cosmic rays reaching AU Mic b, c, and Prox Cen b

Author:

Mesquita A L1ORCID,Rodgers-Lee D23ORCID,Vidotto A A1ORCID,Kavanagh R D1ORCID

Affiliation:

1. Leiden Observatory, Leiden University , PO Box 9513, 2300 RA, Leiden, the Netherlands

2. School of Physics, Trinity College Dublin, The University of Dublin , Dublin D02 E8C0, Ireland

3. School of Cosmic Physics, Dublin Institute for Advanced Studies , 31 Fitzwilliam Place, Dublin D02 XF86, Ireland

Abstract

ABSTRACT The propagation of Galactic cosmic rays is well understood in the context of the Solar system but is poorly studied for M dwarf systems. Quantifying the flux of cosmic rays reaching exoplanets is important since cosmic rays are relevant in the context of life. Here, we calculate the Galactic cosmic ray fluxes in AU Mic and Prox Cen planetary systems. We propagate the Galactic cosmic rays using a 1D cosmic ray transport model. We find for Prox Cen  b, AU Mic  b, and AU Mic  c that the Galactic cosmic ray fluxes are strongly suppressed and are lower than the fluxes reaching Earth. We include in our models, for the first time for a star other than the Sun, the effect of radial particle drift due to gradients and curvatures in the stellar magnetic field. For Prox Cen, we find that the inclusion of particle drift leads to less suppression of Galactic cosmic rays fluxes than when it is excluded from the model. In the case of AU Mic we explore two different wind environments, with a low and high stellar wind mass-loss rate. For AU Mic, the particle drift also leads to less suppression of the Galactic cosmic ray fluxes but it is only significant for the high mass-loss rate scenario. However, both wind scenarios for AU Mic suppress the Galactic cosmic rays strongly. Overall, careful modelling of stellar winds is needed to calculate the Galactic cosmic ray fluxes reaching exoplanets. The results found here can be used to interpret future exoplanet atmosphere observations and in atmospheric models.

Funder

European Research Council

Science Foundation Ireland

SFI

HEA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3