Probing the Physics of the Solar Atmosphere with the Multi-slit Solar Explorer (MUSE). II. Flares and Eruptions

Author:

Cheung Mark C. M.ORCID,Martínez-Sykora JuanORCID,Testa PaolaORCID,De Pontieu BartORCID,Chintzoglou GeorgiosORCID,Rempel MatthiasORCID,Polito VanessaORCID,Kerr Graham S.ORCID,Reeves Katharine K.ORCID,Fletcher LyndsayORCID,Jin MengORCID,Nóbrega-Siverio DanielORCID,Danilovic SanjaORCID,Antolin PatrickORCID,Allred JoelORCID,Hansteen ViggoORCID,Ugarte-Urra IgnacioORCID,DeLuca EdwardORCID,Longcope DanaORCID,Takasao ShinsukeORCID,DeRosa Marc L.ORCID,Boerner PaulORCID,Jaeggli SarahORCID,Nitta Nariaki V.ORCID,Daw AdrianORCID,Carlsson MatsORCID,Golub LeonORCID

Abstract

Abstract Current state-of-the-art spectrographs cannot resolve the fundamental spatial (subarcseconds) and temporal (less than a few tens of seconds) scales of the coronal dynamics of solar flares and eruptive phenomena. The highest-resolution coronal data to date are based on imaging, which is blind to many of the processes that drive coronal energetics and dynamics. As shown by the Interface Region Imaging Spectrograph for the low solar atmosphere, we need high-resolution spectroscopic measurements with simultaneous imaging to understand the dominant processes. In this paper: (1) we introduce the Multi-slit Solar Explorer (MUSE), a spaceborne observatory to fill this observational gap by providing high-cadence (<20 s), subarcsecond-resolution spectroscopic rasters over an active region size of the solar transition region and corona; (2) using advanced numerical models, we demonstrate the unique diagnostic capabilities of MUSE for exploring solar coronal dynamics and for constraining and discriminating models of solar flares and eruptions; (3) we discuss the key contributions MUSE would make in addressing the science objectives of the Next Generation Solar Physics Mission (NGSPM), and how MUSE, the high-throughput Extreme Ultraviolet Solar Telescope, and the Daniel K Inouye Solar Telescope (and other ground-based observatories) can operate as a distributed implementation of the NGSPM. This is a companion paper to De Pontieu et al., which focuses on investigating coronal heating with MUSE.

Funder

NASA ∣ Science Mission Directorate

EC ∣ European Research Council

Spanish Ministry of Science, Innovation and Universities

UKRI ∣ Science and Technology Facilities Council

NSF

Swedish Civil Contingencies Agency

European Union

Google Cloud

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3