Mid-infrared Studies of Dusty Sources in the Galactic Center

Author:

Bhat Harshitha K.ORCID,Sabha Nadeen B.ORCID,Zajaček MichalORCID,Eckart AndreasORCID,Schödel RainerORCID,Hosseini S. ElahehORCID,Peißker FlorianORCID,Zensus AntonORCID

Abstract

Abstract Mid-infrared (MIR) images of the Galactic center show extended gas and dust features along with bright infrared sources (IRS). Some of these dust features are a part of ionized clumpy streamers orbiting Sgr A*, known as the mini-spiral. We present their proper motions over a 12 yr time period and report their flux densities in N-band filters and derive their spectral indices. The observations were carried out by VISIR at the ESO’s Very Large Telescope. High-pass filtering led to the detection of several resolved filaments and clumps along the mini-spiral. Each source was fit by a 2D Gaussian profile to determine the offsets and aperture sizes. We perform aperture photometry to extract fluxes in two different bands. We present the proper motions of the largest consistent set of resolved and reliably determined sources. In addition to stellar orbital motions, we identify a stream-like motion of extended clumps along the mini-spiral. We also detect MIR counterparts of the radio tail components of the IRS 7 source. They show a clear kinematical deviation with respect to the star. They likely represent Kelvin–Helmholtz instabilities formed downstream in the shocked stellar wind. We also analyze the shape and orientation of the extended late-type IRS 3 star that is consistent with the Atacama Large Millimeter/submillimeter Array submillimeter detection of the source. Its puffed-up envelope with a radius of ∼2 × 106 R could be the result of the red-giant collision with a nuclear jet, which was followed by tidal prolongation along the orbit.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3