Examining Flux Tube Interactions as a Cause of Sub-alfvénic Outflow

Author:

Unverferth John,Longcope Dana

Abstract

Abstract In accepted models, magnetic tension drives reconnected magnetic flux away from the reconnection site at the local Alfvén speed. Numerous observational signatures of these outflows have been identified in solar flares, notable among them being supra-arcade downflows (SADs), almost none move at the Alfvén speed as predicted by models. Well-studied examples of SADs or SAD loops found in the flare of 2017 September 10 (SOL2017-09-10T15:35:00) move at a quarter or less of the expected Alfvén speed. Among those reasons posited to explain such discrepancies is the possibility that reconnected flux experiences a drag force during its outflow. Drag has not been included in previous reconnection models. Here, we develop the first such model in order to test the possibility that drag can explain sub-alfveńic reconnection outflows. Our model uses thin flux tube dynamics, previously shown to match features of flare observations other than outflow speed, including for the 2017 September 10 flare. We supplement the dynamics with a drag force representing the tube’s interaction with surrounding plasma through the formation of a wake. The wake’s width appears as a parameter in the force. We perform simulations, varying the drag parameter and synthesizing EUV observations, to test whether a drag force can produce a reasonable fit to observed features of the September 10 flare. We find that that slower retraction increases the brightness of emission and lowers the temperature of the synthetic plasma sheet. With proper choice of parameters the drag enables the simulation to agree reasonably with the observations.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3