Rapid Localization of Gravitational Wave Sources from Compact Binary Coalescences Using Deep Learning

Author:

Chatterjee ChayanORCID,Kovalam ManojORCID,Wen LinqingORCID,Beveridge DamonORCID,Diakogiannis FoivosORCID,Vinsen KevinORCID

Abstract

Abstract The mergers of neutron star–neutron star and neutron star–black hole binaries (NSBHs) are the most promising gravitational wave (GW) events with electromagnetic (EM) counterparts. The rapid detection, localization, and simultaneous multimessenger follow-up of these sources are of primary importance in the upcoming science runs of the LIGO-Virgo-KAGRA Collaboration. While prompt EM counterparts during binary mergers can last less than 2 s, the timescales of existing localization methods that use Bayesian techniques, vary from seconds to days. In this paper, we propose the first deep learning–based approach for rapid and accurate sky localization of all types of binary coalescences, including neutron star–neutron star and NSBHs for the first time. Specifically, we train and test a normalizing flow model on matched-filtering output from GW searches to obtain sky direction posteriors in around 1 s using a single P100 GPU, which is several orders of magnitude faster than full Bayesian techniques.

Funder

OzGrav - Australian Research Council Centre for Excellence for Gravitational Wave Discovery

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3