The Infrared Complex Refractive Index of Amorphous Ammonia Ice at 40 K (1.43–22.73 μm) and Its Relevance to Outer Solar System Bodies

Author:

Roser Joseph E.ORCID,Ricca AlessandraORCID,Cartwright Richard J.ORCID,Dalle Ore CristinaORCID,Cruikshank Dale P.ORCID

Abstract

Abstract A near-IR absorption band at 2.2 μm linked to ammonia-containing ice has been detected on icy bodies throughout the solar system and appears in the extensive volume of data for Pluto and Charon returned by New Horizons. This band is an important clue for understanding the abundance of ammonia and ammoniated compounds on the surface of outer solar system bodies and requires new laboratory data for its full analysis. To satisfy this data need, the complex refractive index of amorphous ammonia ice was calculated from experimental infrared transmission spectra with ice deposition and measurements conducted at 40 K, a characteristic surface temperature for outer solar system bodies. The measured imaginary part of the complex refractive index and associated band strength calculations are generally larger than prior published values for amorphous ammonia ice at 30 K. The complex refractive index for amorphous ammonia at 40 K computed in the mid-infrared region (2.5–22.73 μm) will also be valuable for interpreting observations of both solar system and astrophysical sources anticipated with the Near InfraRed Spectrograph and Mid-Infrared Instrument on the James Webb Space Telescope.

Funder

Alessandra Ricca

Publisher

American Astronomical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3