Orbital and Physical Characterization of Asteroid Dimorphos Following the DART Impact

Author:

Naidu Shantanu P.ORCID,Chesley Steven R.ORCID,Moskovitz NicholasORCID,Thomas CristinaORCID,Meyer Alex J.ORCID,Pravec PetrORCID,Scheirich PeterORCID,Farnocchia DavideORCID,Scheeres Daniel J.ORCID,Brozovic MarinaORCID,Benner Lance A. M.ORCID,Rivkin Andrew S.ORCID,Chabot Nancy L.ORCID

Abstract

Abstract The Double Asteroid Redirection Test (DART) mission impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos, on 2022 September 26 UTC. We estimate the changes in the orbital and physical properties of the system due to the impact using ground-based photometric and radar observations, as well as DART camera observations. Under the assumption that Didymos is an oblate spheroid, we estimate that its equatorial and polar radii are 394 ± 11 m and 290 ± 16 m, respectively. We estimate that the DART impact instantaneously changed the along-track velocity of Dimorphos by −2.63 ± 0.06 mm s−1. Initially, after the impact, Dimorphos’s orbital period had changed by −32.7 minutes ± 16 s to 11.377 ± 0.004 hr. We find that over the subsequent several weeks the orbital period changed by an additional 34 ± 15 s, eventually stabilizing at 11.3674 ± 0.0004 hr. The total change in the orbital period was −33.25 minutes ±1.5 s. The postimpact orbit exhibits an apsidal precession rate of 6.7 ± 0.°2 day−1. Under our model, this rate is driven by the oblateness parameter of Didymos, J 2, as well as the spherical harmonics coefficients, C 20 and C 22, of Dimorphos’s gravity. Under the assumption that Dimorphos is a triaxial ellipsoid with a uniform density, its C 20 and C 22 estimates imply axial ratios, a/b and a/c, of about 1.3 and 1.6, respectively. Preimpact images from DART indicate Dimorphos’s shape was close to that of an oblate spheroid, and thus our results indicate that the DART impact significantly altered the shape of Dimorphos.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3