Dynamical Evolution of the Didymos−Dimorphos Binary Asteroid as Rubble Piles following the DART Impact

Author:

Agrusa Harrison F.ORCID,Ferrari FabioORCID,Zhang YunORCID,Richardson Derek C.ORCID,Michel PatrickORCID

Abstract

Abstract Previous efforts have modeled the Didymos system as two irregularly shaped rigid bodies, although it is likely that one or both components are in fact rubble piles. Here, we relax the rigid-body assumption to quantify how this affects the spin and orbital dynamics of the system following the DART impact. Given the known fundamental differences between our simulation codes, we find that faster rigid-body simulations produce nearly the same result as rubble-pile models in scenarios with a moderate value for the momentum enhancement factor, β (β ∼ 3) and an ellipsoidal secondary. This indicates that the rigid-body approach is likely adequate for propagating the post-impact dynamics necessary to meet the DART Mission requirements. Although, if Dimorphos has a highly irregular shape or structure, or if β is unexpectedly large, then rubble-pile effects may become important. If Dimorphos’s orbit and spin state are sufficiently excited, then surface particle motion is also possible. However, these simulations are limited in their resolution and range of material parameters, so they serve as a demonstration of principle, and future work is required to fully understand the likelihood and magnitude of surface motion.

Funder

NASA

Swiss National Science Foundation

European Union Horizon 2020

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3