Balance Control of a Flywheel Inverted Pendulum by Fuzzy Logic Controller

Author:

ERKOL Hüseyin Oktay1ORCID,KÖZKURT Cemil2ORCID

Affiliation:

1. BANDIRMA ONYEDI EYLUL UNIVERSITY

2. Bandırma Onyedi Eylül Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Ulaştırma Mühendisliği

Abstract

In this study, a flywheel inverted pendulum was modeled as simulation. The model controlled by fuzzy logic and PID controller for comparison. Fuzzy logic controllers were designed using triangular and Gaussian membership functions and various methods that are "and", "implication" and "aggregation". All gains from fuzzy logic controllers and PID were tuned by the trial-and-error method. The best performance was obtained by fuzzy logic controller that uses a triangular membership function and "prob/probor" functions. The results were evaluated in terms of three phenomena. In terms of Settling Time and Maximum Overshoot, Fuzzy Triangle MF with 0.15 s and 0 degrees, respectively, and PID and Fuzzy Triangle MF models with 0 degrees in terms of Steady-State error achieved the best success. In addition, the robustness of the control system was tested by applying two different types of disturbance inputs, random and impulse. The results show that fuzzy logic is a good alternative for balance control of a flywheel inverted pendulum, but PID has an acceptable performance.

Publisher

Journal of Materials and Mechatronics: A

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3