Neural network-based robot localization using visual features

Author:

Trujillo-Romero FelipeORCID

Abstract

This paper outlines the development of a module capable of constructing a map-building algorithm using inertial odometry and visual features. It incorporates an object recognition module that leverages local features and unsupervised artificial neural networks to identify non-dynamic elements in a room and assign them positions. The map is modeled using a neural network, where each neuron corresponds to an absolute position in the room. Once the map is constructed, capturing just a couple of images of the environment is sufficient to estimate the robot's location. The experiments were conducted using both simulation and a real robot. The Webots environment with the virtual humanoid robot NAO was used for the simulations. Concurrently, results were obtained using a real NAO robot in a setting with various objects. The results demonstrate notable precision in localization within the two-dimensional maps, achieving an accuracy of ± (0.06, 0.1) m in simulations contrasted with the natural environment, where the best value achieved was ± (0.25, 0.16) m.

Publisher

Salesian Polytechnic University of Ecuador

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3