Optimization of Packing Irregular Three-Dimensional Objects

Author:

Romanova Tetyana1ORCID,Chuhai Andrii1,Pankratov Oleksandr1,Yaskov Georgiy1,Stoyan Yuriy1

Affiliation:

1. Anatolii Pidhornyi Institute of Mechanical Engineering Problems of the NAS of Ukraine, Kharkiv

Abstract

Introduction. Nowadays the irregular packing problem is becoming more important, since effective space management and optimal arrangement of objects are becoming key factors for ensuring efficiency and saving resources in a wide range of applications, e.g., additive manufacturing, space engineering, material sciences and logistics. It becomes an integral part of strategic development in the fields of production and science. The purpose of the paper. The paper is devoted to construction of a mathematical model and development of an efficient technique for densely filling a container with the maximum number of sets of irregular three-dimensional objects. Results. Irregular objects are approximated with a certain accuracy by non-convex polyhedra, which can be represented by the union of convex polytopes. Non-overlapping and containment constraints are described using quasi-phi-functions and phi-functions. A mathematical model of the packing problem is provided as a mixed-integer nonlinear programming considering given proportions of different types of objects. A solution strategy is proposed to search for local-optimal solutions. To find reasonable feasible packing, a fast algorithm based on a strip approximation of objects is used. A numerical example of the development of a print map of a set of industrial parts with maximum filling of the working chamber of a 3D-printer is given. Conclusions. The results confirm the efficiency of the proposed packing strategy, which is based on an integrated approach that takes into account the geometric features of irregular objects and their completeness. Keywords: packing, irregular objects, set of parts, mathematical modeling, optimization, 3D-printing.

Publisher

V.M. Glushkov Institute of Cybernetics

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3