A Survey on Terrain Traversability Analysis for Autonomous Ground Vehicles: Methods, Sensors, and Challenges

Author:

Borges PauloORCID,Peynot ThierryORCID,Liang SisiORCID,Arain BilalORCID,Wildie Matthew,Minareci MelihORCID,Lichman SergeORCID,Samvedi Garima,Sa InkyuORCID,Hudson NicolasORCID,Milford MichaelORCID,Moghadam PeymanORCID,Corke PeterORCID

Abstract

Understanding the terrain in the upcoming path of a ground robot is one of the most challenging problems in field robotics. Terrain and traversability analysis is a multidisciplinary field combining robotics with image and signal processing, feature extraction, machine learning, three-dimensional (3D) mapping, and 3D geometry. Application scenarios range from autonomous vehicles on urban networks to agriculture, defence, exploration, mining, and search and rescue. Given the broad set of techniques available and the fast progress in this area, in this paper we organize and survey the corresponding literature, define unambiguous key terms, and discuss links among fundamental building blocks ranging from terrain classification to traversability regression. The advantages and the drawbacks of the methods are critically discussed, providing a comprehensive coverage of key aspects, including open code, available datasets for experimentation and comparisons, and important open research issues.

Publisher

Field Robotics Publication Society

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applications in off-road vehicles interaction with terrain: An overview;Journal of Terramechanics;2024-12

2. SaDVIO: Sparsify and Densify VIO for UGV Traversability Estimation;IEEE Robotics and Automation Letters;2024-10

3. EAT: Environment Agnostic Traversability for reactive navigation;Expert Systems with Applications;2024-06

4. A Framework for Real-time Generation of Multi-directional Traversability Maps in Unstructured Environments;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

5. Robot-Dependent Traversability Estimation for Outdoor Environments using Deep Multimodal Variational Autoencoders;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3