Artifactual lipid coatings on intervessel pit membranes in dried xylem tissues of some angiosperms

Author:

Yamagishi Shohei1ORCID,Shigetomi Kengo2,Fujiyasu Syunya3ORCID,Aoki Dan3ORCID,Uno Tetsuro4,Fukushima Kazuhiko3,Sano Yuzou2

Affiliation:

1. Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan

2. Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan

3. Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan

4. School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan

Abstract

Abstract Intervessel pit membranes are recognized as key structures for influencing water flow/embolism resistance. The mechanisms remain largely unclear owing to difficulties in examining them intact in nature. This study investigates ethanol-extractable pit membrane incrustations (PMIs), which were previously reported in certain angiosperms and may affect their water conduction. The presence of PMIs was determined for 40 angiosperms by field-emission scanning electron microscopy (FE-SEM). Candidate components of PMIs were determined by chemical analyses of wood extracts, and their distributions in the xylem were examined by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Cryo-TOF-SIMS and cryo-FE-SEM were also performed to clarify the native distribution of PMIs. PMIs were observed in 11 species. Some of them were categorized as fat trees, which are known to store abundant lipids. Tilia japonica sapwood displaying PMIs contained large amounts of lipids, which were distributed in the dried xylem tissue, consistent with the distribution of the PMIs. In the frozen samples of T. japonica, however, the distributions were restricted to the parenchyma. In conclusion, PMIs consist of an artifactual coating of lipids originated from the parenchyma in dried samples at room temperature. Researchers performing surface analyses of plant cell walls should take strong precautions against such self-coating by these intrinsic chemicals.

Publisher

Brill

Subject

Forestry,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3