Intra-seasonal trends in phloem traits in Pinus spp. from drought-prone environments

Author:

Balzano Angela1,De Micco Veronica2,Čufar Katarina1,De Luis Martin3,Gričar Jožica4

Affiliation:

1. 1Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia

2. 2Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Naples, Italy

3. 3Department of Geography and Regional Planning, University of Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain

4. 4Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia

Abstract

Abstract Recent studies on the seasonal dynamics of secondary tissue formation in Mediterranean trees have shown that xylogenesis depends on species and site conditions, but many questions still remain open. On the other side of the cambium, even less information is available about phloem structure and timing of its formation. We analysed intra-annual phloem variation in width and cell traits in the conducting, non-collapsed phloem (CPH) of Pinus pinea and Pinus halepensis at Mediterranean sites in southern Italy and Spain. In all investigated trees, it was possible to differentiate among the non-conducting, collapsed phloem (NCPH), and the CPH. CPH showed no evident annual growth layers; no differences in radial dimensions of early- and late phloem sieve cells, and no cyclic patterns of axial parenchyma distribution. Since it was not possible to study the seasonality of the phloem growth, we analysed the entire CPH. CPH width showed seasonal fluctuations and was generally the widest during the maximum cambial activity and narrowest during summer and winter. The radial size of newly formed sieve cells varied in relation to seasonal dynamics of cambial activity and fluctuations in local weather conditions. The number of axial parenchyma cells in CPH increased during the summer. The observed intra-annual variations in CPH width and structure seemed to be correlated with seasonal weather conditions in order to ensure a sufficient amount of conducting phloem tissue for translocation of photosynthates and signalling molecules to the actively growing tissues along the stem of a tree growing in the harsh Mediterranean conditions.

Publisher

Brill

Subject

Forestry,Plant Science

Reference128 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3