Xylogenesis Responses to a Mediterranean Climate in Holm Oak (Quercus ilex L.)

Author:

Liyaqat Iqra1,Balzano Angela2ORCID,Niccoli Francesco1ORCID,Kabala Jerzy Piotr1ORCID,Merela Maks2ORCID,Battipaglia Giovanna1ORCID

Affiliation:

1. Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy

2. Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia

Abstract

Quercus ilex L., an evergreen oak species typical of the western and central Mediterranean basin, is facing decline and dieback episodes due to the increase in the severity and frequency of heat waves and drought events. Studying xylogenesis (the wood formation process) is crucial for understanding how trees respond with their secondary growth to environmental conditions and stress events. This study aimed to characterize the wood formation dynamics of Quercus ilex and their relationship with the meteorological conditions in an area experiencing prolonged drought periods. Cambial activity and xylem cell production were monitored during the 2019 and 2020 growing seasons in a Q. ilex forest located at the Vesuvius National Park (southern Italy). The results highlighted the significant roles of temperature and solar radiation in stimulating xylogenesis. Indeed, the correlation tests revealed that temperature and solar radiation positively influenced growth and cell development, while precipitation had an inhibitory effect on secondary wall formation. The earlier cell maturation in 2020 compared to 2019 underscored the impact of global warming trends. Overall, the trees studied demonstrated good health, growth and adaptability to local environmental fluctuations. This research provides novel insights into the intra-annual growth dynamics of this key Mediterranean species and its adaptation strategies to climatic variability, which will be crucial for forest management in the context of climate change.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3