Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old

Author:

Guo Juan12,Xiao Lin34,Han Liuyang12,Wu Hao45,Yang Tao34,Wu Shunqing45,Yin Yafang12

Affiliation:

1. 1 Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.

2. 2 Wood Collections (WOODPEDIA), Chinese Academy of Forestry, Beijing 100091, China.

3. 3 Chengdu Institute of Cultural Relics and Archaeology, Chengdu 610072, Sichuan Province, China.

4. 4 Key Scientific Research Base of Excavated Wood and Lacquer ware Conservation, State Administration of Cultural Heritage (Chengdu Workstation), Chengdu 610072, Sichuan Province, China.

5. 5 Jingzhou Conservation Center, Jingzhou 434020, Hubei Province, China.

Abstract

ABSTRACT The relationship between the cell wall ultrastructure of waterlogged wooden archeological artifacts and the state of water bound to cell walls and free in voids is fundamental to develop consolidating and drying technologies. Herein, a lacquer-wooden ware and a boat-coffin dating 4th century BC were selected as representative artifacts to study. Wood anatomy results indicated that they belonged to Idesia sp. and Machilus sp., respectively. They exhibited a typical spongy texture, as revealed by SEM observations, and their water contents had increased significantly. Solid state NMR, Py-GC/MS, imaging FTIR microscopy and 2D-XRD results demonstrated that the deterioration resulted from the partial cleavages of both polysaccharide backbones and cellulose hydrogen-bonding networks, almost complete elimination of acetyl side chains of hemicellulose, the partial depletion of β-O-4 interlinks, as well as oxidation and demethylation/demethoxylation of lignin. These further caused the disoriented arrangement of crystalline cellulose, and the decrease in cellulose crystallite dimensions and crystallinity. In consequence, mesopores and macropores formed, and the number of moisture-adsorbed sites and their accessibility increased. Moreover, results on free water deduced by the changes of pore structure and the maximum monolayer water capacity achieved by the GAB model indicated that water in waterlogged archeological wooden artifacts was mainly free water in mesopores.

Publisher

Brill

Subject

Forestry,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3