Abstract
AbstractWaterlogged wood conservation is a complex and challenging task. Detailed knowledge about the interactions between the applied chemicals and wood is necessary to ensure the effective and safe conservation of wooden artifacts. The present research aims to determine the mechanism of dimensional stabilization of archeological wood by organosilicon compounds using the combination of synchrotron-based X-ray fluorescence microscopy (XFM) and nanoindentation. Archeological oak wood was treated with methyltrimethoxysilane, (3-mercaptopropyl)trimethoxysilane, or 1,3-bis-[(diethylamino)-3-(propoxy)propan-2-ol]-1,1,3,3-tetramethyldisiloxane, which in previous studies were found to be more effective than other organosilicons in stabilizing wood dimensions. The XFM and nanoindentation results showed that all three organosilicons infiltrated wood cell walls and enhanced their mechanical properties. The XFM also showed that part of the chemicals filled some void spaces like cell lumina. Based on the results obtained here and in our previous research, it is determined that the mechanism of archeological wood dimensional stabilization by organosilicon treatment is complex and likely involves both filling cell lumina and infiltration into cell walls where organosilicons interact with wood polymers.
Funder
The Polish–U.S. Fulbright Commission
Polish Ministry of Science and Higher Education
US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Plant Science,General Materials Science,Forestry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献