The cambial response of Scots pine trees to girdling and water stress

Author:

Fajstavr Marek12,Giagli Kyriaki1,Vavrčík Hanuš1,Gryc Vladimír1,Horáček Petr2,Urban Josef34

Affiliation:

1. 1Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic

2. 4Department of Xylogenesis and Biomass Allocation, Domain of Environmental Effects on Terrestrial Ecosystems, Czechglobe — Global Change Research Institute, The Czech Academy of Sciences, Belidla 4a, 60300 Brno, Czech Republic

3. 2Department of Forest Botany, Dendrology and Geobiocenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic

4. 3Siberian Federal University, Svobodnyj Prospect 79, 660041 Krasnoyarsk, Russia

Abstract

Abstract We monitored six healthy dominant trees and six girdled Scots pine trees for two successive growing seasons (2014 and 2015) to investigate the seasonal dynamics, cambial activity, and morphology of the new xylem and phloem cells formed under environmental stress when girdling was applied during the dormant period (15 January 2014). Microcore (1.8 mm) samples were collected weekly using a Trephor tool above and below the girdling area, and weather data were measured on site. Drought stress in combination with girdling reduced the total number of differentiation days cell formation. In 2014, no significant differences in tracheid dimensions were observed between the girdled area and the control trees, while in 2015, the control trees showed significantly smaller cell wall thickness and radial dimensions of the latewood tracheids (LW) compared to 2014 and girdled trees had no occurrence of LW. Under stressful heat waves and prolonged periods of no precipitation, the trees tended to reduce the number of tracheids that were formed and exhibited smaller radial dimensions (narrower tree rings) to increase their hydraulic efficiency. Trees responded to limited water availability by forming intra-annual density fluctuations (IADFs L) in the zone of the LW to overcome stressful conditions. Although xylem cell differentiation was affected by stressful conditions, no significant variability in phloem cell dimensions was observed. Thus, the phloem tissue was less sensitive to exogenous factors.

Publisher

Brill

Subject

Forestry,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3