Traces of Local Adaptive Acclimatization Response in the Tracheid Anatomical Traits between Dry and Wet Mesic Norway Spruce (Picea abies) Forests in Moravia, Czech Republic?

Author:

Tsalagkas Dimitrios1ORCID,Novák Tomáš1,Fajstavr Marek12,Vavrčík Hanuš1ORCID,Gryc Vladimír1,Horáček Petr12,Giagli Kyriaki1

Affiliation:

1. Department of Wood Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic

2. Department of Xylogenesis and Biomass Allocation, Czechglobe—Global Change Research Institute, The Czech Academy of Sciences, Bělidla 4a, 603 00 Brno, Czech Republic

Abstract

Norway spruce (Picea abies) forests in temperate zones are already reacting to short-term extreme summer heatwaves, threatening the vitality of trees and forest productivity, and can even lead to local and regional dieback events. Examining quantitative wood anatomy can provide helpful information in terms of understanding the physiology mechanisms and related responses of conifer trees to local environmental interactions in relation to tracheid adaptive capacity. This study analysed the tracheid functional anatomical traits (FATs) plasticity of six young Norway spruce trees growing in two mesic research plots with high annual precipitation (~43%) and air temperature differences during 2010–2017. The research plots are located in the sub-mountainous (Rájec Němčice) and mountainous (Bílý Kříž) belts of the Moravia region, Czech Republic. Vapour pressure deficit and cell wall reinforcement index (CWRI) were shown to be the most representative environmental parameters as proxies of dry conditions. Tracheid FATs indicated latewood phenological plasticity sensitivity, with more pronounced variability in the warmer and drier plots. Latewood tracheids of Norway spruce trees grown in the RAJ formed significantly thicker cell walls than BK during the studied period. The observed differences between the two research plots indicate additional support for tracheid cells’ hydraulic safety against cavitation and potential traces of adaptive acclimatization response.

Funder

Internal Grant Agency (IGA) of the Faculty of Forestry and Wood Technology at Mendel University in Brno

European Union’s Horizon 2020

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3