Genome-wide analysis revisits incipient sympatric and allopatric speciation in a beetle

Author:

Hong Wei1,Li Kexin23,Sharaf Kamal3,Song Xiaoying23,Pavlìcek Tomàš3,Zhao Huabin14,Nevo Eviatar3

Affiliation:

1. 1Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China

2. 2State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou 730000, China

3. 3Institute of Evolution, University of Haifa, Haifa 3498838, Israel

4. 4College of Science, Tibet University, Lhasa 850000, China

Abstract

Abstract The grain beetle, Oryzaephilus surinamensis, is a widespread species distributed in the wild and in granaries. Our earlier extensive biological studies indicated that the beetle shows incipient sympatric speciation (SS) in the wild at Evolution Canyon I (EC-I), Israel, and allopatric speciation, in a granary. Here we provide genome-wide evidence supporting our adaptive evolution scenario involving two models of speciation, SS in the wild, and allopatric in the granary. The EC-I microsite is a hot spot of SS across life from bacteria to mammals caused by the sharp opposite microclimates. The tropical hot, dry and savannoid biome dubbed the “African” slope (AS), sharply contrasts with the opposite temperate, cool, humid, and forested biome on the European” slope (ES), separated by only ~250 meters. The third allopatric granary population is 26 km north of EC-I. The granary population showed larger genomic, morphological, and behavioral distances, smaller genome size, more unique transposable elements, and reproductive isolation, displaying faster genomic divergence than between the wild populations at EC-I. The incipient SS of the wild populations, and the speciation of the granary population are reinforced by the substantial genomic divergence among the three beetle populations, supporting again the evolutionary scenario of incipient SS with gene flow at EC-I, and allopatric speciation in the granary population. We propose additional studies in Israel, the Mediterranean basin, and worldwide, to negate alternative explanations, based on a broader sampling and analysis.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3