Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis

Author:

Mukherjee SumitORCID,Kuang ZhuoranORCID,Ghosh SamratORCID,Detroja RajeshORCID,Carmi Gon,Tripathy SuchetaORCID,Barash DannyORCID,Frenkel-Morgenstern MilanaORCID,Nevo Eviatar,Li Kexin

Abstract

Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3