For the Last Time: Temporal Sensitivity and Perceived Timing of the Final Stimulus in an Isochronous Sequence

Author:

Li Min Susan,Rhodes Darren,Di Luca Massimiliano

Abstract

An isochronous sequence is a series of repeating events with the same inter-onset-interval. A common finding is that as the length of a sequence increases, so does temporal sensitivity to irregularities — that is, the detection of deviations from isochrony is better with a longer sequence. Several theoretical accounts exist in the literature as to how the brain processes sequences for the detection of irregularities, yet there remains to be a systematic comparison of the predictions that such accounts make. To compare the predictions of these accounts, we asked participants to report whether the last stimulus of a regularly-timed sequence appeared ‘earlier’ or ‘later’ than expected. Such task allowed us to separately analyse bias and performance. Sequences lengths (3, 4, 5 or 6 beeps) were either randomly interleaved or presented in separate blocks. We replicate previous findings showing that temporal sensitivity increases with longer sequence in the interleaved condition but not in the blocked condition (where performance is higher overall). Results also indicate that there is a consistent bias in reporting whether the last stimulus is isochronous (irrespectively of how many stimuli the sequence is composed of). Such result is consistent with a perceptual acceleration of stimuli embedded in isochronous sequences. From the comparison of the models’ predictions we determine that the improvement in sensitivity is best captured by an averaging of successive estimates, but with an element that limits performance improvement below statistical optimality. None of the models considered, however, provides an exhaustive explanation for the pattern of results found.

Publisher

Brill

Subject

Cognitive Neuroscience,Applied Psychology,Experimental and Cognitive Psychology,Neuropsychology and Physiological Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3