Rapid calibration to dynamic temporal contexts

Author:

Rhodes Darren1ORCID,Bridgewater Tyler23,Ayache Julia2,Riemer Martin4

Affiliation:

1. School of Psychology, Keele University, Keele, UK

2. NTU Psychology, Nottingham Trent University, Nottingham, UK

3. School of Psychology, Cardiff University, UK

4. Biological Psychology and Neuroergonomics, Technical University Berlin, Berlin, Germany

Abstract

The prediction of future events and the preparation of appropriate behavioural reactions rely on an accurate perception of temporal regularities. In dynamic environments, temporal regularities are subject to slow and sudden changes, and adaptation to these changes is an important requirement for efficient behaviour. Bayesian models have proven a useful tool to understand the processing of temporal regularities in humans; yet an open question pertains to the degree of flexibility of the prior that is required for optimal modelling of behaviour. Here we directly compare dynamic models (with continuously changing prior expectations) and static models (a stable prior for each experimental session) with their ability to describe regression effects in interval timing. Our results show that dynamic Bayesian models are superior when describing the responses to slow, continuous environmental changes, whereas static models are more suitable to describe responses to sudden changes. In time perception research, these results will be informative for the choice of adequate computational models and enhance our understanding of the neuronal computations underlying human timing behaviour.

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Current perspectives on distortions to time;Quarterly Journal of Experimental Psychology;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3