Peptides and proteins regulating food intake: a comparative view

Author:

Flik Gert,Huising Mark,Gorissen Marnix

Abstract

AbstractEnergy homeostasis is under multiple endocrine and neural controls that involve both central and peripheral hormones and neuropeptides. Disorders of energy balance (e.g., obesitas and anorexia nervosa) are caused by subtle dysregulation of these regulatory mechanisms. The hypothalamic arcuate nucleus is a main site of central regulation where two distinct subpopulations of neurons co-express either neuropeptide Y (NPY) and agouti-related protein (AgRP), or proopiomelanocortin (POMC) and cocaine and amphetamine-regulated transcript (CART): the former set of peptides increases food intake; the latter decreases food intake and affect energy metabolism. Key peripheral hormones affecting energy metabolism include cholecystokinin (CCK), leptin and insulin, which decrease food intake, and ghrelin, which increases food intake. CCK and ghrelin regulate food intake in the short term (by affecting meal size), whereas leptin and insulin regulate food intake over longer periods spanning several meals. These signals and their physiology are reasonably well understood in mammals. On the other hand, knowledge on energy metabolism in earlier vertebrates is scant. Recently characterised central food intake regulatory mechanisms in fish suggest that they operate in a manner similar to their mammalian counterparts. Peripheral mechanisms have been poorly studied outside mammals. The recent identification of leptin in several fish species provides new insights and opportunities to enhance our understanding of the regulation of food intake. Comparative analysis of these peripheral mechanisms may shed new light on the function and evolution of the mechanisms controlling energy homeostasis. In this review, we summarise recent developments in understanding of mechanisms and signals that regulate energy balance in mammals, and compare these to what we now know about their orthologues in earlier vertebrates, with a particular focus on bony fishes.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3