Physiological characteristics and gene regulation mechanism of juvenile leaves of Acer rubrum L. during leaf color transformation in spring

Author:

Han Xuan12,Ge Wei1234,Wang Zhikun12,Cui Jinteng1234,Zhang Kezhong1234

Affiliation:

1. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, People’s Republic of China

2. College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, People’s Republic of China

3. Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 102206, People’s Republic of China

4. Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing 102206, People’s Republic of China

Abstract

Abstract Acer rubrum L., a widely used ornamental colored-leaf tree species, has great utility in both residential and urban landscaping. However, unsuitable environmental conditions tend to reduce the intensity of color change, greatly reducing the ornamental value of this species. Here, we investigated the discoloration of A. rubrum leaves from red to green during maturation. We first quantified leaf-color change in the L*, a*, b* color space, and found the most noticeable difference in the a* value, which changed from positive (more red) to negative (more green). In green leaves, photosynthetic pigment content was four-fold greater than that in red leaves, and anthocyanin content was significantly lowed (a 78.33% decrease). Consistent with this, levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), as well as non-photochemical quenching, were significantly higher in red leaves. The activity levels of phenylalanine ammonia lyase (PAL), an initial enzyme in the anthocyanin synthesis pathway, were significantly positively correlated with anthocyanin accumulation. In contrast, polyphenol oxidase (PPO) enzyme activity was not correlated with any with other indicators. Transcriptome sequencing identified 2,161 differentially expressed genes (DEGs) between the red leaves and the green leaves (1,253 upregulated). Some of these DEGs (e.g., 4-coumarate: coenzyme A ligase (4CL), anthocyanidin synthase (ANS), phenylalanine ammonia lyase (PAL), flavonol synthase (FLS), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and flavanone 3-hydroxylase (F3H)) encoded important enzymes in the anthocyanin metabolic pathway, while others (e.g., MYB111 (EZV62_000212), MYB12 (EZV62_010323), and bHLH3 (EZV62_023045)) regulated anthocyanin accumulation. Our results have led to a clearer understanding of the physiological and genetic mechanisms underlying leaf-color change in A. rubrum, and provide a basis from which to improve the ornamental properties of colored-leaf tree species.

Publisher

Brill

Subject

Plant Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3